
Pseudocode, the Pseudocode Programming
Process, and Alternatives to the PPP

Noah Doersing

noah.doersing@student.uni-tuebingen.de

Abstract. Writing pseudocode before source code eases the develop-
ment process, helping to fix certain kinds of errors before any source
code is written and providing easily maintainable documentation. Stud-
ies show that pseudocode is superior to visual approaches for routine cre-
ation in most programming environments, while visualizations are more
effective when used as a teaching aid. The Pseudocode Programming
Process (PPP) for routine creation is introduced in detail and compared
to some well-known alternatives.

Keywords: pseudocode, ppp, programming, routine creation, software
engineering, code, flowcharts, prototyping, refactoring, test-driven devel-
opment, design by contract

1 Introduction

When writing software, programmers will reach a point when the class structure
has been designed and the major routines inside each class have been defined,
but no code has been written yet. Taking the next step - writing the routines
from scratch in an elegant, efficient and maintainable way - is a near-impossible
task without a systematic approach.

One of these approaches, and the one this paper will discuss in detail, is called
the Pseudocode Programming Process (PPP). It utilizes pseudocode to enable
iterative routine creation, providing guidelines and simple, straightforward steps
for going from a high-level description to low-level source code, thus aiding the
programmer in efficient code creation. Further, it allows the detection of some
kinds of errors before any source code is written. As an additional benefit, ac-
curate and complete documentation is created with very little additional effort
when following the steps outlined here.

I will first describe what constitutes good pseudocode in this context, giving
positive and negative examples. Then I will give a more in-depth example and
explanation of the PPP, highlighting some of the points a programmer should
keep in mind while creating a routine. Afterwards, I will mention and interpret
results of some studies investigating the applications of pseudocode, before dis-
cussing the advantages and disadvantages of the PPP as well as some alternative
approaches and how they compare to pseudocode. Finally, I will summarize my
findings and mention some items for consideration in future research.



1.1 Background

As this paper is discussing a software development tool, experiences in program-
ming and software development methodologies are beneficial. The examples will
be written in C and Java, however no deep knowledge of any specific program-
ming language is required.

2 Contribution

2.1 Good Pseudocode

In this section, outline some criteria regarding the quality of pseudocode will be
outlined, and what characterizes good pseudocode will be defined.

Pseudocode in the context of this paper consists of precise, natural-language
descriptions of specific actions. This sets it apart from other kinds of pseudocode
commonly used in algorithm papers or classes, where pseudocode is understood
as a way of writing down programs at a relatively low level without adhering
to the specific rules of any programming language. Of course, when implement-
ing a formula or anything that is more conventionally expressed in a textual
representation other than natural language, this guideline loses some validity.

Good pseudocode avoids code-like statements: it tries to stay at a higher
level than source code in order to increase the efficiency during the design phase
and to avoid getting restricted by specific limitations or features of the target
programming language. This allows the programmer to capture the intent of an
action inside a routine: Pseudocode should describe what a design is doing, not
how exactly it is going to be implemented.

However the level of the pseudocode should be low enough to enable the
programmer to refine it into source code very quickly (almost automatically).

Fig. 1 provides an example of pseudocode following these guidelines. Its pur-
pose (creating a dialog box and adding it to some data structure) can be easily
guessed without further knowledge about any implementation details.

Keep track of current number of resources in use
If another resource is available

Allocate a dialog box structure
If a dialog box structure could be allocated

Note that one more resource is in use
Initialize the resource
Store the resource number at the

location provided by the caller
Endif

Endif
Return true if a new resource was created;

else return false

Fig. 1. Example: good pseudocode

increment resource number by 1
allocate a dlg struct using malloc
if malloc() returns NULL then return 1
invoke OSrsrc_init to initialize a resource

for the operating system
*hRsrcPtr = resource number
return 0

Fig. 2. Example: bad pseudocode

On the other hand, as shown in Fig. 2, failing to follow the guidelines produces
very hard-to-read pseudocode, in this case with many superfluous low-level im-



plementation details (C-specific terms such as dlg struct, malloc or OSrsrc
init and conventions such as 0 meaning true) leaking through.

Two points that will be examined in more detail in the ”Discussion” section
are that pseudocode allows the programmer to quickly evaluate multiple different
approaches and that writing pseudocode is an iterative process, which will also
become apparent in the following example.

2.2 Example: Constructing a routine with the PPP

This section will give an example of going through the PPP workflow, highlight-
ing some points to keep an eye on during the routine creation process.

The necessary steps are, in order, the design of the routine, writing pseu-
docode, translating the pseudocode into source code, and checking and testing
the routine, whereupon some of the steps may be repeated multiple times de-
pending on design and engineering challenges.

Design Suppose that after designing the class structure and outlining the main
routines, the programmer wants to write a routine that reads the grades for stu-
dents taking a specific class (”SCT”) in a given year from a database, computes
the final grade for each student as a weighted average of the grades, and returns
a list of student names and final grades.

After writing an informal spec of the routine as above, the programmer should
first check the prerequisites: they need to make sure that the routine is well de-
fined, necessary, and that it fits cleanly into the class design. Unless the informal
spec is already detailed enough, the problem solved by the routine has to be
clearly defined, along with inputs, outputs, assumed preconditions and assured
postconditions. In the aforementioned example, the input is a year, there are no
guaranteed preconditions, and the output is either a list of names and grades or
a boolean indicating failure.

Other important tasks in this stage include naming the routine, settling on
a strategy for testing the routine, researching already available functionality
in order not to write duplicate code (as well as searching for prior solutions
to similar problems), considering how to handle errors (in the example: how
to handle years in which the class wasn’t offered and how to handle database
connection errors) and, if necessary, how to write the routine to run as efficiently
as possible.

Pseudocode After the previous steps have been mentally executed, the pro-
grammer first writes a short high-level description of the routine (Fig. 3), which
might later be used as the header comment of the routine for the API docu-
mentation (e.g. using Javadoc), in order to make sure they understand it before
writing the initial, still high-level, iteration of pseudocode (Fig. 4). If writing
a concise high-level description seems like a hard task, it is generally beneficial
to review the routine design again and to consider splitting it up into multiple
smaller routines.



This routine returns a list of all students
taking the SCT course in the given year,
along with their final grades.

Fig. 3. Example: high-level
routine description

validate the year
retrieve a list of students from the database
compute the final grades
return the names and grades as a list

Fig. 4. Example: high-level pseudocode

Now the pseudocode is iteratively refined and checked until it is detailed
enough to be translated into source code without a lot of effort (Fig. 5). At this
stage, the programmer can easily and quickly evaluate multiple approaches to
solve particularly tricky parts of the problem.

if the year is valid
connect to the database and retrieve info about all students in the given year
keep a list of the students and their final grades
for all students

calculate a weighted average of the three grades
add their name and final grade to the list

endfor
endif
return the list; or return false if no list could be generated for the given year

Fig. 5. Example: mid-level pseudocode

Before continuing on to the coding stage, the programmer should take a
step back and check the pseudocode, trying to discover high-level mistakes and
making sure to understand all components first. This can also easily be performed
by a coworker who might bring in a different perspective.

Code Once the pseudocode is written and checked, the programmer writes the
routine declaration and adds the high-level header comment. Then the pseu-
docode is copied into the body of the routine and turned into inline comments.
This serves as a blueprint and framework for code creation, where the source
code below each pseudocode comment is iteratively filled in (Fig. 6).

As one can see in the example, each line of pseudocode has resulted in one
or multiple lines of source code. Normally, 2 to 10 lines of source code should
be generated out of a single pseudocode statement, but this example is near the
low end of that range due to its simplicity.

Check and Test After finishing the implementation of a routine, the program-
mer should verify that the implementation is elegant, correct, and that it satisfies
the original spec. A few points to keep an eye on during this stage are outlined
below.

Check whether to move some of the code into a separate routine. This might
be necessary when a piece of code is used in multiple places in the routine (or



/**
* This routine returns a list of all students taking the SCT course in
* the given year, along with their final grades.
*/

public List<Pair<String, Float>> listFinalGrades(int year) {
// if the year is valid
if (validateYear(year)) {

// connect to the database and retrieve info about all students in the given year
[...] Student[] students = [...]

// keep a list of the students and their final grades
List list = new ArrayList<Pair<String, Float>>();

// for all students
for (Student student : students) {

// calculate a weighted average of the three grades
float finalGrade = 0.4 * student.presentationGrade

+ 0.4 * student.termpaperGrade
+ 0.2 * student.reviewGrade;

// add their name and final grade to the list
list.add(new Pair<String, Float>(student.name, finalGrade));

}

// return the list; or return false if no list could be generated for the given year
return list;

}
return false;

}

Fig. 6. Example: (shortened) routine as a result of the PPP

program) or when it might come in useful in future routines as well. Additionally,
moving long blocks of code into a new routine makes the original routine more
concise. In these cases, it should be easy to determine the name of the new routine
from the pseudocode. Apply the PPP recursively to make sure the resulting
routine is well-designed and maintainable.

Mentally execute each path the routine can take based on different inputs
or preconditions, and check for errors. This also serves to deepen the program-
mer’s understanding of the code, making the following checking and testing steps
easier, and can be performed by or with a coworker.

After finishing this review, compile the routine. It is not advisable to do this
earlier as it tends to make the programmer focus prematurely on fixing small
mistakes like undeclared variables, mistyped variable names or missing line ter-
minators, leading to the programmer potentially overlooking higher-level errors.
Setting the compiler’s warning level to the highest setting allows the program-
mer to catch many subtle errors and inaccuracies (which can be addressed more
easily now as they will not be buried in more major errors) and to improve their
coding style in order to avoid repeating the same small mistakes over and over
again.

After the first successful compilation, the programmer should debug and test
the routines in accordance with well-known guidelines. If many errors surface in



this part of the development process, it may be advisable to consider adapting
the pseudocode and rewriting the routine from scratch.

The penultimate part of this process is to go through the routine again, clean-
ing up ”leftovers”. This includes revisiting the inputs, making sure all parameters
of the routine are used, refactoring variable names to improve descriptiveness and
consistency, searching for off-by-one errors and potentially infinite loops, making
sure white space is used correctly, and various other small improvements.

Finally, the pseudocode (now in the form of comments) is inspected and
adapted to more accurately reflect the source code it describes. Lines of pseu-
docode that have been made redundant (e.g. due to variable naming or the
structure of the code) are removed at this stage, making the routine easier to
read and maintain in the future.

3 Evaluation

In this section, I will summarize, quote, and interpret some studies that have
been conducted to investigate various aspects of pseudocode, largely comparing
pseudocode to other ways of representing a program before the coding stage.

One study mentions that text has a higher information density than equiv-
alent visualizations [2], suggesting that pseudocode may be more readable than
visual representations of the same routine.

A widely-cited study by D. A. Scanlan [3] finds that ”students overwhelm-
ingly preferred structured flowcharts over pseudocode for comprehending the
algorithms presented”, with the ”results strongly [indicating] that structured
flowcharts do indeed aid algorithm comprehension. A large difference was found
even for the simplest algorithm.” However this study only evaluates pseudocode
as a teaching aid and not as a software engineering tool, rendering the interesting
results largely irrelevant here.

Another study comparing flowcharts and Program Design Languages (PDL,
which resemble pseudocode as defined in the context of this paper) [4] finds that
”the use of a PDL by a software designer, for the development and description of
a detailed program design, produced better results than did the use of flowcharts.
Specifically, the designs appeared to be of significantly better quality, involving
more algorithmic or procedural detail, than those produced using flowcharts.
[...] When equivalent, highly readable designs were presented to subjects in both
PDL and flowchart form, no pattern of short-term or long-term differences in
comprehension of the design was observed. No significant differences were de-
tected in the quality or other properties of programs written as implementations
of the designs.” ”Subjective ratings indicated a mild preference for PDLs and
indicated several specific criteria on which students found PDLs preferable to
flowcharts.”

Finally, M. K. Hayden finds [6] that pseudocode performs better than algo-
rithmic state machine charts (ASM charts, closely related to flowcharts) as a
development aid for programming in a text-based language, while ASM charts



are superior to pseudocode if the target programming environment is a ”dia-
grammatic computer interface language”, suggesting that design tools should be
closely matched to implementation tools.

Summarizing these studies, it seems that pseudocode is more effective than
visual approaches during conventional software design, but visualizations are
still beneficial in other areas, especially in education.

4 Discussion

After introducing the PPP and evaluating it in the previous sections, we can draw
some conclusions about the advantages and disadvantages of using pseudocode
in the software development process.

4.1 Benefits of the PPP

The PPP allows the programmer to review a complex routine design very early
in the development process (before writing any source code), providing an ef-
ficient way of verifying that a design works and catching potential mid-level
errors. This reduces the need to review the code itself. If the pseudocode is kept
(e.g. in the form of inline comments) and any changes or additions are made
to the pseudocode first, this benefit is also carried over to the maintenance and
modification stage of software development, helping to reduce the number of
errors accumulating over time.

By using the high-level description of the routine as a header comment for
the API documentation and by keeping the non-redundant lines of pseudocode
around as inline comments, commenting effort is significantly reduced. This also
serves as easily maintainable documentation: source code and comments are in
the same place, which makes it easier and more natural to keep the program and
the documentation in ”sync” with each other.

The PPP supports the idea of iterative refinement: A high-level description
is refined to pseudocode, which in turn is refined into source code. This provides
a simple path for the programmer to follow for routine creation and helps them
avoid getting stuck on some problem. As a result of this approach, high-level
errors are caught at the design stage, mid-level errors at the pseudocode stage,
and low-level errors at the coding stage.

Another benefit of writing pseudocode before source code is that pseudocode
takes much less time to write. This enables the programmer to evaluate multiple
approaches or variations on an approach before settling on one to implement,
which ideally leads to implementing only the most efficient or maintainable ap-
proach.

4.2 Disadvantages of the PPP

As any software development approach, the PPP has some downsides.



Writing pseudocode before source code, as well as following the other guide-
lines of the PPP, adds some overhead to the software development process. This
eases the construction of complex routines, but may also result in increasing the
time spent writing simpler components of a program.

Further, it is not always clear when to stop writing pseudocode and start
writing source code instead. The programmer might spend some time writing
unnecessarily detailed pseudocode without noticing.

Keeping this pseudocode as inline comments after coding the routine often
results in some redundancy or ”overdocumentation”. Actively removing redun-
dant comments serves to remedy this.

It’s worth pointing out that automated tests as well as formal interface spec-
ifications including preconditions, postconditions and invariants, which are es-
sential to the development of some types of software, are not a central part of
the PPP, however it is possible to adapt it to more strongly focus on contracts
between routines and tests by combining it with the following alternatives.

4.3 Alternatives to the PPP

In this section, a number of alternative software development approaches will
be discussed. None of them are equivalent to the PPP and as such cannot fully
replace pseudocode, but they can be combined with or without the PPP, with
their application also leading to elegant routines. At the end of this section, the
alternatives approaches will be compared to the PPP and potential shortcomings
will be pointed out.

Flowcharts. This approach provides a visual way of defining/designing the con-
trol flow inside a routine. Due to their visual nature, flowcharts are easier to
use on paper or a whiteboard than a computer, but they can get relatively
messy quickly if the design is changed (e.g. as a result of iterative refinement).
For large or complex routines, a visual representation can be less readable than
pseudocode [2]. This tool also works better for low-level algorithm design, and as
such can not be used to effectively create most routines. Much like pseudocode,
floacharts are also applicable as a teaching aid, perhaps more effectively so [3].

(Rapid) Prototyping. Before implementation in the target programming lan-
guage, a prototype is constructed in a higher-level language or with a specialized
tool. In addition to guiding the final implementation of the routine and catching
errors, this enables the programmer to evaluate the effectiveness of the approach
and allows for preliminary (user) testing where required. Two types of proto-
types are distinguished between1: Horizontal prototypes serve to display a wide
range of features without implementing any in detail, while vertical prototypes
are focused on near-complete implementation of a specific aspect of a system.
For routine creation, vertical prototypes are most commonly used.

1
http://www.usabilityfirst.com/glossary/horizontal-and-vertical-prototypes/



For example, suppose a programmer wants to write an image comparison
program in C. They might first write a prototype in Matlab, which is a higher-
level language with significant image processing functionality already built-in,
to verify and improve their approach and make sure it works on many kinds of
images. After rapidly iterating and arriving at a well-performing algorithm, the
programmer reimplements the program in C for maximum processing speed in
an embedded system.

”Build One To Throw Away”. Approximates prototyping in the target pro-
gramming language. After a quick preliminary implementation, another version
is implemented in the same programming language, which is expected to be more
well-designed and contain fewer errors than the first one.

The following three approaches are presented in Code Complete [1]. They
provide less complete routine creation workflows compared to the approaches
that have already been introduced, as will be discussed in the following section,
but they are still worth mentioning as potential additions to an organization’s
software development process.

Refactoring. After routine creation, the programmer locates and eliminates
”code smells”, e.g. long routines, deeply nested loops, inconsistent or inaccu-
rate naming, and duplicated code. As a result of making sure that the source
code follows such best practices, code quality and maintainability is improved
[5].

Test-driven development. Before writing any source code directly belonging to
the routine in construction, an automated test case (”unit test”) is written. Then
source code is added to the routine until it passes the test case. If necessary,
another test case is written, followed by the addition of enough source code for
the routine to pass the test. This process is repeated until the routine is complete.

Design by Contract. Routines are defined based on their preconditions (asser-
tions regarding the state of the program before the routine is called and any
inputs to the routines) and postconditions (assertions regarding the state after
termination of the routine, as well as its outputs).

4.4 Comparison of alternative approaches to the PPP

Only Flowcharts, Prototyping and ”Build One To Throw Away” can be used to
ease the routine creation process by supporting iterative refinement.

Refactoring can be applied in any case to catch any errors or ”code smells”
after the initial implementation in the target programming language. Test-driven
development divides the routine creation into multiple passes over the routine,
where in each step some additional functionality is added, and as such eases
development, but can also result in messy patched-up code if little attention
to code quality is paid during the process (and it is not combined with a final



refactoring step). Design by contract barely qualifies, as it does not aid routine
creation in any way other than making sure inputs and outputs are well-defined,
and as a result is merely useful when combined with other approaches.

While all approaches are in principle applicable in any programming lan-
guage, different programming languages lend themselves to different approaches
and vice versa. For example, design by contract may be more necessary in high-
level languages with dynamic type systems, while detailed pseudocode might be
superfluous in very high-level languages.

All of the alternatives to the PPP that I have introduced in this section do
not provide some of the benefits of the PPP: They do not ”automatically” result
in inline documentation, and iterative refinement during routine creation, which
is very beneficial to coming up with an elegant design, is sometimes problematic.

5 Conclusion

We’ve seen the PPP as a versatile approach to routine creation, which is one of
the most important aspects of software development. In doing so, we’ve discussed
what discerns good pseudocode from bad pseudocode, and how pseudocode com-
pares to more visual approaches in multiple studies. In addition, we’ve explored
some alternatives to using pseudocode, and talked about how they compare.
Due to the aforementioned benefits of the PPP, its simple adaptability and be-
cause most alternatives don’t allow for iterative refinement or near-automatic
inline documentation generation, I conclude that the PPP is an essential tool
for efficient software development.

An interesting matter to investigate in future research might be potential
improvements to the PPP for better suitability for software development in
higher-level languages, perhaps through combining it with prototyping or test-
driven development. Even before that, more studies comparing the PPP to other
non-visual routine creation approaches might be valuable in order to evaluate
which parts of which approach make the largest difference for creating efficient,
maintainable, well-documented code.

References

1. McConnell, S.: Code Complete, 2nd Edition, 216–234 (2004)
2. Stankovic, N., Kranzelmller, D., Zhang, K.: The PCG: An Empirical Study. Journal

of Visual Languages and Computing 12, 203–216 (2001)
3. Scanlan, D. A.: Structured flowcharts outperform pseudocode: an experimental com-

parison, IEEE Software 6 (5), 2836 (1989)
4. Ramsey, H. R., Atwood, M. E., van Doren, J. R.: Flowcharts Versus Program Design

Languages: An Experimental Comparison, Communications of the ACM 26 (6) 445–
449 (1983)

5. Fowler, M.: Refactoring: Improving the Design of Existing Code (1999)
6. Hayden, M. K., Olfman, L., Gray, P., Ahituv, N.: An Experimental Investigation

of Visual Enhancements for Programming Environments, Journal of Information
Systems, Fall 1997, 19–26 (1997)


